The Prevention of Mammal Damage to Trees in Woodland

PURPOSE

This note is designed to help woodland managers to diagnose mammal damage, to evaluate its severity, to consider management options and to determine the appropriate action to take. The guide is brief but suggests sources of more detailed information on damage control operations.

ESTABLISHING THE NEED FOR PROTECTION

Types of damage

Woodland managers will be concerned to protect both tree crops and woodland ecosystems from serious damage by mammals. Most damage to trees arises from either browsing (feeding on buds, shoots and foliage) or removal of bark from main stems or branches. The latter may occur by gnawing (bark-stripping) or rubbing. A particularly common type of rubbing injury (fraying) results when male deer rub new antlers to remove ‘velvet’ or to mark territories.

Close inspection of damaged trees and their surroundings can often reveal the species responsible. The most important features to note are:

• form of damage (i.e. browsing, gnawing or rubbing);
• height of damage;
• time of year when damage occurred;
• presence and size of teeth marks;
• signs of animal presence and abundance - droppings, footprints, runs, scrapes or burrows.

Other impacts

High populations of some woodland mammals can have a significant impact on the wider woodland ecosystem.

Heavy browsing may:

• prevent natural regeneration from seed\(^1\) or coppice stumps\(^2\);
• prevent the development of a structurally diverse shrub layer;
• reduce the abundance of palatable plants such as bramble, bluebell, dog’s mercury and honeysuckle and increase the abundance of grasses and unpalatable species such as bracken, rushes (\textit{Juncus} species) and ragwort;
• reduce the structural diversity of ground vegetation (a particular problem with close grazing by rabbits).

These impacts often occur over time such that their significance may not be immediately obvious and the required action may be difficult to determine in consequence. Complete exclusion of herbivores from woodland can be detrimental in the long term as it results in rank vegetation, reduction of floral diversity and excessive scrub development. In most woodland types, species and structural diversity are higher when some browsing and grazing occurs. Fence specifications may be chosen to allow some species through but not others. Only broad guidance on deer management and woodland conservation is available\(^3,4,5,33\) and much depends on the precise management objectives and the characteristics of the woodland. If in doubt, seek advice from the Forestry Commission, English Nature, Scottish Natural Heritage, or Countryside Council for Wales.
Damage assessment

Discovery of signs of damage or of damaging mammals does not necessarily mean that protective measures must be taken. The decision should be objectively based on the economic and ecological costs and benefits. This requires an assessment of current damage or damage potential. If trees are already present on or near the site, loss of planted trees can be established by estimating stocking density. The amount of damage to trees can be determined by sampling using the Nearest Neighbour Method. In the absence of trees, prior to planting, damage risk can be inferred from intensity of animal signs and past experience.

Table 1a Identification of browsing damage to trees

<table>
<thead>
<tr>
<th>Mammal</th>
<th>Tree size</th>
<th>Time of year</th>
<th>Description of damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank voles</td>
<td>Newly planted</td>
<td>Winter</td>
<td>Will remove buds, particularly of pine, usually on restock sites; often immediately after planting.</td>
</tr>
<tr>
<td>Rabbits</td>
<td>Winter, spring, rarely summer</td>
<td></td>
<td>Sharp-angled, knife-like cut on ends of stems or branches, removed portion often eaten. Damage up to 540 mm (higher in snow).</td>
</tr>
<tr>
<td>Hares</td>
<td>As rabbits</td>
<td></td>
<td>As rabbits but shoots often not consumed. Damage up to 0.7 m.</td>
</tr>
<tr>
<td>Deer</td>
<td>All year</td>
<td></td>
<td>Lack of teeth in front upper jaw produces ragged edge on damaged stems. Roe and muntjac browse up to 1.1 m, fallow, red and sika up to 1.8 m. Fallow pull newly planted trees out of ground.</td>
</tr>
<tr>
<td>Sheep & goats</td>
<td>All year</td>
<td></td>
<td>Coarse browsing of foliage to 1.5 m. Newly planted trees pulled out of ground. Sheep and deer browsing damage very similar.</td>
</tr>
<tr>
<td>Cattle & horses</td>
<td>All year</td>
<td></td>
<td>Coarse browsing of foliage to 2.5 m with horses, 2.0 m with cattle. Newly planted trees pulled out of ground.</td>
</tr>
</tbody>
</table>

Browsing by deer and sheep leaves ragged ends on stems and branches. The shoots are always eaten.
Rabbits and hares leave clean diagonal cuts on ends of stems and branches. The shoots are often left lying by rabbits, always by hares.
Growing tips of Sitka spruce browsed by deer.
Sharp-angled cut on young stem browsed by rabbits.
Browsing damage to birch by sheep.
Browsing damage to spruce by deer.

Damage assessment
Bark is stripped on roots or lower stem up to height of surrounding vegetation. Very small trees can be girdled and felled. Bark removed in short, irregular strips 5 to 10 mm wide, with incisor marks 1 mm wide in pairs in the bark around the edge of the wound.

Bark removed in short, irregular strips 5 to 10 mm wide, with incisor marks 1 mm wide in pairs. Bank voles climb, so damage can occur up to 4 m. Less common than damage by field voles. Bark stripping can occur to a height of 540 mm (higher in snow). Incisor marks are 3 to 4 mm wide, in pairs, usually running diagonally across the stem. Beech particularly vulnerable.

Incisor marks 1.5 mm wide in pairs, usually running parallel with stem or branch. Sycamore, beech, oak and pine most at risk. Red, sika and fallow deer strip bark leaving vertical incisor marks. Fraying

Severe stripping of bark to 1.5 m, often leading to tree death. Incisor marks diagonal

Severe damage to 2.5 m by horses bark stripping, 2.0 m by cattle rubbing, often leading to tree death. Incisor marks diagonal.

<table>
<thead>
<tr>
<th>Mammal</th>
<th>Tree size</th>
<th>Time of year</th>
<th>Description of damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field voles</td>
<td>Young trees to 5 cm diameter</td>
<td>All year but greatest risk in winter</td>
<td>Bark is stripped on roots or lower stem up to height of surrounding vegetation. Very small trees can be girdled and felled. Bark removed in short, irregular strips 5 to 10 mm wide, with incisor marks 1 mm wide in pairs in the bark around the edge of the wound.</td>
</tr>
<tr>
<td>Bank voles</td>
<td>To early pole stage</td>
<td>Winter and spring</td>
<td>Bark removed in short, irregular strips 5 to 10 mm wide, with incisor marks 1 mm wide in pairs. Bank voles climb, so damage can occur up to 4 m. Less common than damage by field voles.</td>
</tr>
<tr>
<td>Rabbits</td>
<td>All</td>
<td>Winter and spring</td>
<td>Bark stripping can occur to a height of 540 mm (higher in snow). Incisor marks are 3 to 4 mm wide, in pairs, usually running diagonally across the stem. Beech particularly vulnerable.</td>
</tr>
<tr>
<td>Squirrel</td>
<td>10–40 yrs</td>
<td>April–July</td>
<td>Incisor marks 1.5 mm wide in pairs, usually running parallel with stem or branch. Sycamore, beech, oak and pine most at risk</td>
</tr>
<tr>
<td>Deer</td>
<td>Pole stage</td>
<td>All year</td>
<td>Red, sika and fallow deer strip bark leaving vertical incisor marks. Fraying</td>
</tr>
<tr>
<td></td>
<td></td>
<td>March–May</td>
<td></td>
</tr>
<tr>
<td>Sheep & goats</td>
<td>All</td>
<td>All year</td>
<td>Severe stripping of bark to 1.5 m, often leading to tree death. Incisor marks diagonal</td>
</tr>
<tr>
<td>Cattle & horses</td>
<td>All</td>
<td>All year</td>
<td>Severe damage to 2.5 m by horses bark stripping, 2.0 m by cattle rubbing, often leading to tree death. Incisor marks diagonal.</td>
</tr>
</tbody>
</table>
DAMAGE CONTROL

Where an unacceptable risk of damage has been identified, tree protection may be obtained by:

- **barriers** - erection of fencing, tree guards or tree-shelters; use of chemical repellents;
- **control** of animal numbers - shooting, trapping, poisoning or biological control;
- **habitat management** - regrettably, this is a largely theoretical option at present.

Barriers

Tree guards

Includes treeshelters\(^7\), split plastic tubes, spiral guards\(^8\) and mesh guards\(^9\). These are available in a range of shapes and sizes, each designed for a specific purpose.

Fencing\(^1\)

Before deciding on a fencing specification, it is important to be aware of what the damaging animals are capable of jumping or climbing over, pushing through or burrowing under. The line of a fence can greatly influence its cost as it affects fence length and the number of strainer posts used. Straight lengths offer lowest costs but can be visually obtrusive, particularly if they cause a distinct vegetation change. Woodland boundaries and design can be planned to ameliorate these impacts\(^12\), for example fences do not necessarily have to follow straight property boundaries. Achieving a balance between cost and visual impact may mean enclosing some land to be left as open ground, or exclosing outlying groups of trees which can be individually protected. Current research will soon offer lower cost fencing specifications with improved potential for reusing materials; for example, new plastic meshes offer good potential as a low cost, light weight, reusable alternative to wire mesh.

Deer fences can be a significant source of mortality to low flying ground nesting birds, particularly capercaillie and black grouse. Fences should not be used in areas of highest vulnerability, elsewhere plastic netting and high visibility fence tags may be beneficial\(^13\). Where possible, fences should not cross established badger runs. If necessary, set badger gates into rabbit fence-lines where they cross main runs\(^14\). Fences should be removed as soon as they have served their purpose.
Electric fencing

Has little potential for long term woodland protection against wild mammals, but may offer temporary protection for small areas. Electric fencing is most suited to farm fencing; it is most effective against domestic stock, offers some protection against rabbits and will add to the barrier effect of line wire fences. However, mesh fences provide a superior barrier to rabbits and deer.

Chemical repellents

These are currently the subject of much research effort. The only currently recommended repellent is Aaprotect, an irritant to herbivores which offers over-winter protection of young trees and potential for protection against bark-stripping by rabbits, squirrels and voles. Longer acting repellents are being developed using microencapsulated capsaicin (a substance derived from chilli peppers). There is currently little progress on the development of systemic repellents which protect new growth after application.

Deer control

Populations and ranges of most deer species are increasing, and most protection efforts alone are unreliable in the face of very high deer densities. In the long term, deer control becomes an essential element of a successful damage management strategy. The strategy must be based on an estimates of current population density, population trends, future availability of food (in effect, a function of the amount of open space and restock) and the target deer density. This technique is being successfully used by the Forestry Commission for red and roe deer. It is best implemented in collaboration with neighbours through local Deer Management Groups. Designing deer glades and ride systems with shooting in mind can greatly increase cull efficiency. As well as controlling the impact of deer, carefully planned culling regimes can generate income from stalking and venison, as well as reducing mortality from road traffic accidents, disease and starvation.

Shooting

Shooting is the only permissible method of killing deer. It must be done humanely and within the terms of the relevant Acts. Generally only rifles of specified calibre and muzzle energy can be used, and then during tightly defined open seasons.

Grey squirrel control

Shooting

Squirrel shooting, with or without drey poking, will rarely reduce grey squirrel numbers during the damage season sufficiently to prevent bark-stripping damage.

Poisoning

Warfarin is regulated by the Control of Pesticides Regulations 1986 which permits the use of 0.02% warfarin on wheat to control grey squirrels in specified areas of England, Wales and Scotland where red squirrels are locally absent (consult the Forestry Commission for details). The technique is designed to achieve short-term targeted removal of squirrels in and around damage vulnerable tree crops during the damage season. Woodlands will be recolonised by grey squirrels within three months. An index is being tested to help forest managers judge the risk of squirrel damage each year to guide control decisions. A grey squirrel immunocontraceptive is being developed but this new technology, if successful, will take at least five years to come to fruition.
Table 2 Summary of options for tree protection

<table>
<thead>
<tr>
<th></th>
<th>Tree guards</th>
<th>Fencing</th>
<th>Electric fencing</th>
<th>Chemical repellents</th>
<th>Shooting</th>
<th>Gassing/poisoning</th>
<th>Trapping/snaring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field vole</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>?</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Bank vole</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Grey squirrel</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>?</td>
<td>x</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Rabbit</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>?</td>
<td>?</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hare</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>?</td>
<td>?</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Deer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sheep & goats</td>
<td>?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Cattle & horses</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

✓ primary option
? not to be relied upon; may offer temporary or partial protection
X either not viable or illegal

Rabbit control

Gassing

The fumigation of burrow systems with either sodium cyanide or aluminium phosphide is the most effective method of rabbit control. However it requires trained personnel and stringent safety precautions.

Trapping/snaring

Cage traps baited with carrots and box traps set in fence lines can be useful in rabbit control. It is a legal requirement of all live-capture traps that, once set, they must be visited daily.

Snaring is not recommended unless other methods have been unsuccessful. The Wildlife and Countryside Act 1981 prohibits the use of self-locking snares and requires snares to be visited at least daily.

Owners or occupiers of land may be legally obliged to carry out rabbit control at any time of the year under the Pests Act 1954, the Agricultural Act 1947 and the Agricultural (Scotland) Act 1948.

Multi-capture trap in use in a young beech plantation.
Tree guards

- Cost effective for small areas; can protect trees from herbicide damage; can make trees easier to locate; do not present a barrier to public access; do not prevent positive herbivore impacts on ground vegetation. In addition, treeshelters can provide an early boost to growth.
- Do not protect other elements of the woodland ecosystem; are costly for large areas; require regular inspection, maintenance and often eventual removal; are generally not reusable; taller guards can be unstable and cause damage to trees in windy situations; can be unsightly and attract vandalism.

Fencing

- Cost effective for large areas and high stocking densities; often less visually intrusive than individual tree protection; offers protection for natural regeneration and other woodland vegetation.
- Expensive for small areas; reduces accessibility to woodland users; a breach can put whole planted area at risk; may prevent beneficial herbivore impacts. Some reduction of animal numbers may also be necessary when populations are high.

Electric fencing

- Low capital cost; reusable.
- Generally reliable for domestic stock only; dependent on intensive checking and maintenance; requires reliable power source and earthing; breach or loss of power renders the whole fence-line ineffective.

Chemical repellents

- Useful emergency measure for immediate and over-winter protection of small areas.
- Expensive for large areas and where repeat applications are necessary, current repellents offer limited duration of protection and do not protect growth occurring after treatment.

Deer - shooting

- Limits deer damage whilst maintaining positive impacts; recognises deer as a part of forest biodiversity, as a recreational resource, as a tool for habitat management, and as a potential source of income.
- Requires time, experience and long-term commitment to plan and implement; requires cooperation with neighbours if used in small woodlands; public safety considerations may limit potential to cull.

Grey squirrels - poisoning

- The most effective method currently available, particularly in terms of labour requirement.
- Use of a hazardous mammalian toxin in the environment.

Grey squirrels - multi-capture traps

- Easy to site and set; may be used even where red squirrels are resident.
- High capital cost and labour requirement.

Rabbits - gassing

- The most effective method of rabbit control.
- Extremely hazardous to operators if prescribed methods not fully observed; requires properly trained and equipped personnel.

Rabbits - cage traps

- Non-target species can be released unharmed; does not require access to burrow systems. Useful for removal of rabbits from within fenced areas
- Unsuitable for removing substantial numbers of rabbits.

Rabbits - box traps

- Can catch substantial numbers of rabbits; useful for removal of rabbits from within fenced areas and for maintaining good relations with neighbours.
- High capital cost.
Table 4 Operational Notes

<table>
<thead>
<tr>
<th>Mammal</th>
<th>Individual tree protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field voles²²</td>
<td>Tree guards</td>
</tr>
<tr>
<td>(populations fluctuate and so first signs of extensive damage should trigger protection)</td>
<td>200 mm tall split plastic tubes, buried at least 5 mm into the soil. As trees grow, tubes open out and are easily collected. Tree shelters will not protect against voles unless staked firmly and buried 5 mm into soil. Plastic guards with aeration holes are ineffective. Chemical repellents Paint or spray Aaprotect on stem to 300 mm.</td>
</tr>
<tr>
<td>Grey squirrels</td>
<td>Chemical repellents</td>
</tr>
<tr>
<td></td>
<td>Paint or spray Aaprotect on stems to be protected.</td>
</tr>
<tr>
<td>Rabbits³⁴</td>
<td>Tree guards</td>
</tr>
<tr>
<td></td>
<td>0.6 m tree shelters, split plastic tubes or plastic mesh guards (lateral growth may still be browsed); spiral guards. Chemical repellents Aaprotect applied to dormant trees from mid November¹⁵.</td>
</tr>
<tr>
<td>Hares</td>
<td>Tree guards</td>
</tr>
<tr>
<td></td>
<td>0.75 m tree shelters or plastic mesh guards. Chemical repellents As above.</td>
</tr>
<tr>
<td>Deer</td>
<td>Tree guards</td>
</tr>
<tr>
<td></td>
<td>1.2 m for roe and muntjac. 1.8 m for red, sika and fallow. Piling brash on coppice stools as a browsing deterrent is largely ineffective and provides ideal cover for rabbits and muntjac. Chemical repellents As above.</td>
</tr>
<tr>
<td>Sheep and goats</td>
<td>Tree guards</td>
</tr>
<tr>
<td></td>
<td>1.8 m (with regular access, two tall stout stakes needed for most breeds). Not reliable for goats.</td>
</tr>
<tr>
<td>Cattle and horses</td>
<td>Individual tree protection not viable other than for specimen trees.</td>
</tr>
<tr>
<td>Fencing</td>
<td>Direct control</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Vole guards may be required in fenced areas.</td>
<td>No viable options. Use of poisons is illegal. Good weed control will reduce the risk of damage.</td>
</tr>
</tbody>
</table>

Poisoning
Use 0.02% warfarin/wheat bait presented in hoppers of specified dimension for tree protection between 15 March to 15 August in permitted areas.

Live Trapping
Multi-capture traps are the preferred trap for woodland tree protection. A four day pre-bait period is required before traps are set. Set traps must be visited daily. Control more effective when coordinated by a local Squirrel Management Group.

<table>
<thead>
<tr>
<th>Fencing</th>
<th>Shooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9 m; 18 gauge X 31 mm hexagonal mesh with bottom of netting turned out 150 mm towards the rabbits and turved.</td>
<td>Labour intensive and rarely effective.</td>
</tr>
</tbody>
</table>

Gassing
Hydrogen cyanide (Cymag) or phosphine gas (Phostoxin or Talunex) is used from November to March to fumigate burrow systems; extremely hazardous to operators; requires properly trained and equipped personnel. Control most effective when coordinated by a local Deer Management Group.

<table>
<thead>
<tr>
<th>Fencing</th>
<th>Shooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 m. Use rabbit netting with a line wire 100 mm above netting.</td>
<td>Can be effective where damage is due to few individuals.</td>
</tr>
</tbody>
</table>

Electric fencing
To recognised specification.

Fencing
1.8 m red, sika, fallow; 1.5 m roe, muntjac. Evidence suggests that well made dead hedges can protect coppice regrowth from fallow for up to 18 months if deer are at low densities and have alternative browse. However, highly labour intensive and ineffective against roe and muntjac. Roe are not deterred by shocks given by currently available energisers. In recent (unpublished) trials, electric fences have provided an effective barrier against fallow but not against muntjac.

Electric fencing
Roe not deterred by shocks given by currently available energisers. In recent (unpublished) trials, electric fences have provided an effective barrier against fallow but not against muntjac.

Fencing
1.5 m (goats) or 1.0 m (sheep) agricultural stock fence. **Electric fencing**
To recognised specification.

A buffer zone is needed between fence and trees. **Fencing**
Agricultural stock fence (without barbed wire for horses). **Electric fencing**
To recognised specification.
COST-EFFICIENCY OF PROTECTION

Tree protection is often the most expensive operation of the establishment phase. The cost of a deer culling strategy has to be considered in relation to the whole land holding, and over a long time period. In the absence of such a strategy the choice of protection method must generally be made between fencing and individual tree protection, the decision depending on:

• the cost of individual protection (/tree) and the cost of fencing (/m);
• the size of the area to be planted;
• the shape of the area to be planted;
• planting density.

The planting site

<table>
<thead>
<tr>
<th>Animal pests</th>
<th>Site 1 - roe deer and rabbits</th>
<th>Site 2 - rabbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>The planting site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td>Rectangular</td>
<td>Triangular</td>
</tr>
<tr>
<td>Dimension</td>
<td>100 x 60 m</td>
<td>200 x 400 x 450 m</td>
</tr>
<tr>
<td>Area</td>
<td>0.6 ha</td>
<td>4 ha</td>
</tr>
<tr>
<td>Number of plants</td>
<td>1200 (2000/ha)</td>
<td>12000 (3000/ha)</td>
</tr>
<tr>
<td>Fencing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fence length</td>
<td>320 m</td>
<td>1050 m</td>
</tr>
<tr>
<td>Fence cost (/m)</td>
<td>£4.10 (for deer fencing)</td>
<td>£3.30 (for rabbit fencing)</td>
</tr>
<tr>
<td>Total fencing cost</td>
<td>£1312</td>
<td>£3465</td>
</tr>
<tr>
<td>Individual tree protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of treeshelter</td>
<td>£1.00 (for 1.2 m shelters)</td>
<td>£0.70 (for 0.6 m shelters)</td>
</tr>
<tr>
<td>Total treeshelter cost</td>
<td>£1200</td>
<td>£8400</td>
</tr>
<tr>
<td>Most economical protection</td>
<td>Treeshelters</td>
<td>Fencing</td>
</tr>
</tbody>
</table>

Figure 1 Comparative costs of protection with individual guards and fencing (roe deer only).
REFERENCES

 Natural regeneration of broadleaved trees.
 Research Information Note 275.
 Forestry Commission, Edinburgh.

 Management of coppice stools.
 Research Information Note 259.
 Forestry Commission, Edinburgh.

3. ENGLISH NATURE (1997)
 Grazing in upland woods: managing the impacts.

 A role for large herbivores (deer and domestic stock) in nature conservation management in British semi-natural woodland.
 Arboricultural Journal 18, 381-399.

5. FORESTRY AUTHORITY (1994)
 The Management of Semi-natural Woodlands.
 Forestry Practice Guides 1–8.
 Forestry Commission, Edinburgh.

 The nearest neighbour method of quantifying wildlife damage to trees in woodland.
 Forestry Commission Practice Note 1.
 Forestry Commission, Edinburgh.

 Treeshelters.
 HMSO, London.

 Individual tree protection.
 Arboricultural Leaflet 10.
 HMSO, London.

 Plastic mesh tree guards.
 Arboriculture Research Note 5.
 AAIS, Farnham.

 Creating and managing woodlands around towns.
 Forestry Commission Handbook 11.
 HMSO, London.

 Forest fencing.
 Forestry Commission Bulletin 102.
 HMSO, London.

12. FORESTRY AUTHORITY (1994)
 Forest landscape design guidelines.
 HMSO, London.

 Assessment of fence collisions by grouse species in Scotland.
 Research Information Note 264.
 Forestry Commission, Edinburgh.

 Forest operations and badger setts.
 Forestry Commission, Edinburgh.

 Application of the chemical repellent Aaprotect to prevent winter browsing.
 Research Information Note 289.
 Forestry Commission, Edinburgh.

16. FORESTRY AUTHORITY (1996)
 Managing deer in the countryside.
 Forestry Practice Advice Note 2.
 Forestry Commission, Edinburgh.

17. RATCLIFFE, P. R. (1987)
 The management of red deer in upland forests.
 Forestry Commission Bulletin 71.
 HMSO, London.

18. RATCLIFFE, P. R. & MAYLE, B. A. (1992)
 Roe deer biology and management.
 Forestry Commission Bulletin 105.
 HMSO, London.

20. FORESTRY AUTHORITY (1996)
 Controlling grey squirrel damage to woodlands.
 Forestry Practice Advice Note 4.
 Forestry Commission, Edinburgh.

 Protecting trees from field voles.
 Arboriculture Research Note 74.
 AAIS, Farnham.

 Grey squirrel control using modified hoppers.
 Research Information Note 232.
 Forestry Commission, Edinburgh.

 Grey squirrel damage control with Warfarin.
 Research Information Note 180.
 Forestry Commission, Edinburgh.

25. The Protection of Animals Act 1911

 Fencing to prevent damage to crops.
 (CSL Advice Leaflet).
 MAFF, York.
REFERENCES (Cont.)

Rabbit control - phostoxin.
Arboriculture Research Note 43.
AAIS, Farnham.

Damage to coppice regrowth by muntjac deer
Muntiacus reevesi and protection with electric fencing.
Biological Conservation 75, 231-238.

Electric fencing against deer.
Research Information Note 206.
Forestry Commission, Edinburgh.

31. BTCV (1986)
Fencing - A practical conservation handbook.
BTCV, Wallingford.

32. MAFF (1980)
Electric fencing.
MAFF Reference Book 147.
HMSO, London.

33. ENGLISH NATURE (1997)
Deer management and woodland conservation in England.

The prevention of rabbit damage to trees in woodland.
Forestry Commission Practice Note 2.
Forestry Commission, Edinburgh.

35. HSE Agriculture Information Sheet No 22
Gassing of rabbits and vertebrate pests.

36. BRITISH STANDARDS INSTITUTION (1989)
Fences. Part 2.
Specifications for rectangular wire mesh and hexagonal wire netting fences.
BSI, London.

Enquiries relating to this publication should be addressed to:

Harry Pepper
Forest Research
Alice Holt Lodge
Wrecclesham
Farnham
Surrey
GU10 4LH

Tel: 01420 22255
Fax: 01420 23653
E-mail: h.pepper@forestry.gov.uk

USEFUL ADDRESSES

Forestry Commission
231 Corstorphine Road
Edinburgh
EH12 7AT
Tel: 0131 334 0303
Fax: 0131 334 3047

Scottish Natural Heritage
12 Hope Terrace
Edinburgh
EH9 2AS
Tel: 0131 447 4784
Fax: 0131 446 2277

Forestry Commission
Great Eastern House
Tenison Road
Cambridge
CB1 2DU
Tel: 01223 314546
Fax: 01223 460699

English Nature
Northminster House
Peterborough
Cambridgeshire
PE1 1UA
Tel: 01733 455000
Fax: 01733 68834

Forestry Commission
Victoria Terrace
Aberystwyth
Ceredigion
SY23 2DQ
Tel: 01970 625866
Fax: 01970 626177

Countryside Commission
John Dower House
Cheltenham
Gloucestershire
GL50 3RA
Tel: 01242 521381
Fax: 01242 58427

Countryside Council for Wales
Plas Penrhos
Penrhos Road
Bangor
Gwynedd
LL57 2LQ
Tel: 01248 370444
Fax: 01248 584270

Deer Commission
Knowsley
82 Fairfield Road
Inverness
IV3 5LH
Tel: 01463 231751
Fax: 01463 712931

Photographs: FOREST RESEARCH photo library 01420 22255
& FOREST LIFE picture library 0131 334 0303